Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

نویسندگان

  • Tommaso Bocci
  • Chiara Pecori
  • Elisa Giorli
  • Lucia Briscese
  • Silvia Tognazzi
  • Matteo Caleo
  • Ferdinando Sartucci
چکیده

UNLABELLED Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O(-2)) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females) were enrolled in the study and examined basally (T0) and every 4 months (T1, T2, and T3). Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females). We used Macro-EMG and Motor Unit Number Estimation (MUNE) in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. RESULTS AND DISCUSSION SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in Motor Unit Loss and Axonal Regeneration Rate between Sporadic and Familiar Amyotrophic Lateral Sclerosis: An Undervalued Field of Research?

Amyotrophic Lateral Sclerosis (ALS) is a clinically and genetically heterogeneous, late-onset, neurodegenerative disorder of the motor system [1]. Five to ten percent of cases are familial and about 20% of these cases have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. Since its discovery, mutations in Cu/Zn superoxide dismutase (SOD-1) have stimulated a huge amount of intere...

متن کامل

An Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report

Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...

متن کامل

Disruption of Axonal Transport in Motor Neuron Diseases

Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in th...

متن کامل

Potential Therapeutic Benefits of Riluzole in Pre-Symptomatic Familial Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which attacks the motor system. Current treatment for sporadic ALS or Cu, Zn superoxide dimutase 1 (SOD 1 mutation) familial ALS, produces only a modest increase in survival. Riluzole, has been available since 1995 and remains the only disease modifying therapy available for ALS. Using the statistical motor unit number est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2011